1. CAMPO ELECTRICO UNIFORME.

Fórmulas del campo eléctrico creado por una carga puntual:

Campo
$$\vec{E} = \frac{KQ}{r^2} \vec{u}$$

Fuerza
$$\vec{F} = \frac{KQq}{r^2} \vec{u} \Rightarrow \vec{F} = q \cdot \vec{E}$$

Potencial
$$V = \frac{KQ}{r}$$

Energía potencial
$$Ep = \frac{KQq}{r} \Rightarrow Ep = q \cdot V$$

Trabajo
$$W = -\Delta Ep$$

Fórmulas del campo eléctrico uniforme:

Fuerza
$$\vec{F} = q \cdot \vec{E}$$

Energía potencial
$$Ep = q \cdot V$$
 $\Delta Ep = q \cdot \Delta V$

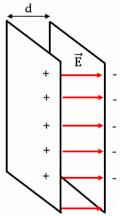
Trabajo
$$W = -\Delta Ep$$
 $W = F \cdot d \cdot \cos \alpha = q \cdot E \cdot d \cdot \cos \alpha$

La fórmula $W = F \cdot d \cdot \cos \alpha$ no podíamos utilizarla para el campo creado por una carga puntual porque F no era constante sino que variaba con r.

Un concepto muy importante es el de diferencia de potencial (ddp) entre dos puntos ΔV . En un campo uniforme se cumple:

$$W = -\Delta Ep = -q \cdot \Delta V = q \cdot E \cdot d \Rightarrow \Delta V = -E \cdot d$$

Esto quiere decir que el campo \vec{E} siempre se dirige hacia donde disminuye el potencial, de + a -:



¿Cuándo es espontáneo y cuándo no espontáneo el movimiento de una carga prueba q en un campo \vec{E} ?

	Carga prueba q > 0	Carga prueba q < 0
	F y E mismo sentido	\vec{F} y \vec{E} sentido contrario
Espontáneo	$\Delta Ep < 0$	ΔEp < 0
W > 0	Ep disminuye	Ep disminuye
\vec{F} y $\Delta \vec{r}$ mismo sentido	$\Delta V < 0$	$\Delta V > 0$
	Hacia V negativo	Hacia V positivo
No espontáneo	$\Delta Ep > 0$	ΔEp > 0
W < 0	Ep aumenta	Ep aumenta
\vec{F} y $\Delta \vec{r}$ sentido contrario	$\Delta V \ge 0$	ΔV < 0

2. ¿CÓMO ACELERAR UNA PARTÍCULA CARGADA?

Se aplica una diferencia de potencial ΔV (que es lo mismo que aplicar un campo eléctrico E) La energía cinética que adquiere es igual a la energía potencial que pierde:

$$\Delta Ec = -\Delta Ep \Rightarrow \Delta Ec = -q \cdot \Delta V \Rightarrow \frac{1}{2} \cdot m \cdot v^2 = -q \cdot \Delta V$$

Despejamos la velocidad:
$$\frac{1}{2} \cdot m \cdot v^2 = -q \cdot \Delta V \Rightarrow v = \sqrt{\frac{-2}{2}}$$

Si q < 0,
$$\Delta V > 0$$
, y si q > 0, $\Delta V < 0$

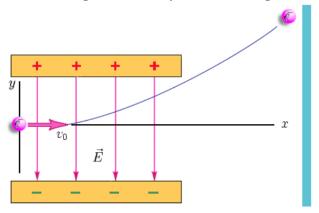
Escrita de la forma estándar con valores absolutos:
$$v = \sqrt{\frac{2 \cdot q \cdot v}{m}}$$

3. PARTÍCULA CON CARGA Q Y VELOCIDAD \vec{v}_0 ENTRA EN UN CAMPO UNIFORME \vec{E}

A) Una partícula con carga q entra con velocidad \vec{v}_0 en la misma dirección y sentido que \vec{E}

Si q > 0
$$\overrightarrow{E}$$
 $\overrightarrow{V_0}$ \overrightarrow{F} La partícula se acelera $W > 0 \Rightarrow \Delta Ep < 0 \Rightarrow \Delta Ec > 0$
Si q < 0 La partícula se frena $W < 0 \Rightarrow \Delta Ep > 0 \Rightarrow \Delta Ec < 0$

- **B)** Una partícula con carga q entra con velocidad \vec{v}_0 en la misma dirección y sentido contrario a \vec{E} . Igual que en A) pero intercambiados.
- C) Una partícula con carga q entra con velocidad \vec{v}_0 perpendicular a \vec{E} . La partícula realiza un movimiento parabólico equivalente al del campo gravitatorio. Consideramos el caso del diagrama (un electrón entra en el sentido positivo del eje X en un campo eléctrico en el sentido negativo del eje Y):



Consideramos $x_0 = 0$ e $y_0 = 0$. Las componentes del vector de posición son:

$$x = v_0 \cdot t$$
$$y = +\frac{1}{2} \cdot a \cdot t^2$$

Hallamos la aceleración aplicando la 2ª ley de Newton: $F = m \cdot a \Rightarrow |q| \cdot E = m \cdot a \Rightarrow a = \frac{|q| \cdot E}{m}$

$$x = v_0 \cdot t$$
$$y = + \frac{|q| \cdot E}{2 \cdot m} \cdot t^2$$