1. MOMENTO LINEAL

El momento lineal \vec{p} de un cuerpo de masa m y velocidad \vec{v} es una magnitud vectorial definida como:

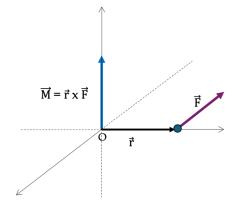
$$\vec{p} = m \cdot \vec{v}$$

El momento lineal de un sistema de dos partículas es la suma de los momentos de cada una de las partículas:

$$\vec{p} = \sum \vec{p}_i = \vec{p}_1 + \vec{p}_2 = m_1 \cdot \vec{v}_1 + m_2 \cdot \vec{v}_2$$

El choque de dos bolas de billar o el retroceso de un cañón al disparar la bala son problemas de Física que se resuelven utilizando la **conservación** del momento lineal de un sistema de dos partículas:

La derivada del momento lineal es la fuerza externa aplicada: $\frac{d\vec{p}}{dt} = \frac{d(m\vec{v})}{dt} = \vec{F}$


Si la fuerza aplicada es cero, el momento lineal se conserva: $\vec{F} = 0 \Rightarrow \frac{d\vec{p}}{dt} = 0 \Rightarrow \vec{p} = constante$.

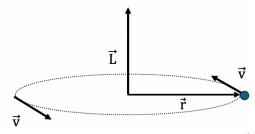
En un choque, el momento antes \vec{p} y después \vec{p} 'es el mismo: $\vec{p} = \vec{p}$ ' \Rightarrow $m_1 \cdot \vec{v}_1 + m_2 \cdot \vec{v}_2 = m_1 \cdot \vec{v}_1' + m_2 \cdot \vec{v}_2'$

<u>**Ejercicio**</u> 1. Una bola de masa 2 kg se desplaza a 20 m \cdot s⁻¹ en el sentido del eje x positivo. Choca con una bola de 3 kg inicialmente en reposo. Calcula la velocidad de la primera bola después del choque si la bola que estaba en reposo sale despedida con una velocidad de 10 m \cdot s⁻¹.

2. MOMENTO DE UNA FUERZA.

El momento \overrightarrow{M} de una fuerza \overrightarrow{F} aplicada sobre una partícula respecto a un punto O es: $\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F}$ Donde \overrightarrow{r} es el vector de posición del cuerpo respecto a O.

<u>**Ejercicio**</u> 2. Utilizando el momento \vec{M} de \vec{F}_1 y \vec{F}_2 explica por qué \vec{F}_1 puede hacer girar la barra respecto al punto O, pero no \vec{F}_2 .


<u>**Ejercicio**</u> 3. Explica por qué el momento \overrightarrow{M} de una fuerza \overrightarrow{F} aplicada sobre un cuerpo puede ser nulo respecto a un punto P pero puede ser máximo respecto a otro punto O distinto. Dibuja un diagrama para explicarlo.

3. MOMENTO ANGULAR

El momento angular \vec{L} de un cuerpo de masa m y velocidad \vec{v} respecto a un punto P se define como:

$$\vec{L} = \vec{r} \times \vec{p}$$

 \vec{r} es el vector de posición del cuerpo respecto a O y \vec{p} es su momento lineal.

Si derivamos el momento angular obtenemos el momento \overrightarrow{M} de la fuerza externa:

$$\frac{d\vec{L}}{dt} = \frac{d(\vec{r} \times \vec{p})}{dt} = \frac{d\vec{r}}{dt} \times \vec{p} + \vec{r} \times \frac{d\vec{p}}{dt} = \vec{v} \times \vec{p} + \vec{r} \times \vec{F} \Rightarrow \frac{d\vec{L}}{dt} = \vec{r} \times \vec{F} = \vec{M}$$

4. CONSERVACIÓN DEL MOMENTO ANGULAR.

La condición para que \vec{L} sea constante es que su derivada respecto al tiempo sea nula: $\frac{d\vec{L}}{dt} = 0$

Que es lo mismo que $\overrightarrow{M} = \overrightarrow{r} \times \overrightarrow{F} = 0$

Y esto se cumple si \vec{r} y \vec{F} son paralelos.

En este caso decimos que la fuerza \vec{F} es **central**.

Fuerzas **centrales** son aquellas en las que la fuerza tiene la misma dirección que el vector de posición respecto al origen de la fuerza. La fuerza **gravitatoria** que una masa M ejerce sobre otra masa m y la fuerza **eléctrica** que una carga Q ejerce sobre otra carga q son fuerzas centrales.

<u>**Ejercicio**</u> **4**. Una fuerza \vec{F} se denomina central si el momento \vec{M} de esa fuerza respecto al origen de la fuerza es 0. Explica por qué la fuerza de la gravedad y la fuerza eléctrica son fuerzas centrales.

<u>Ejercicio</u> 5. El momento angular de la Tierra respecto al Sol es constante, y su valor es el mismo en el perihelio (punto más cercano) y en el afelio (punto más lejano). Demuestra que la velocidad de la Tierra es mayor en el perihelio que en el afelio (2ª Ley de Kepler).